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Abstract. In this paper we describe a new two-mode system, which consists of Kerr-like medium and down
conversion process, called the Kerr-down conversion system. Under a certain condition we can obtain
an exact solution of the dynamical equations of motion. For this system we investigate different kinds
of quadrature squeezing, e.g., single-mode, two-mode and sum-squeezing. Also we give a more general
definition of the principal squeezing. We show that the amounts of nonclassical effects produced by the
Kerr-like and down-conversion processes separately are greater than those obtained from the Kerr-down
conversion system where both the processes are in competition.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements – 42.60.Gd Q-switching

1 Introduction

There are three important processes in nonlinear op-
tics, namely, up-conversion, down-conversion and Kerr-
like process. These processes took most of attention in
the field of quantum optics. The up-conversion process
cannot generate nonclassical effects, however, it switches
energy between modes, e.g., signal and idler [1]. In this
regard the up-conversion process is mainly used in the di-
rectional couplers to transfer data between waveguides [2].
The down-conversion, which is usually named in the lit-
erature as parametric amplifier, can generate nonclassi-
cal effects. Precisely, the degenerate and nondegenerate
parametric amplifiers perfectly generate single-mode [3]
and two-mode [4] squeezed states, respectively. Actually,
squeezed states have been applied in the quantum infor-
mation [5]. The single-mode state obtained from the non-
degenerate parametric amplifier is ‘super-classical’ in the
sense that the evolution of the system broadens the single-
mode P distribution as a result of the spontaneous pump
photon decays [6]. This behavior was named later self-
decoherence [7]. Moreover, the parametric amplifier has
been used in the observation of the interference effects. For
instance, the fourth-order interference effects arise when
pairs of photons produced in parametric amplifier are in-
jected into Michelson interferometers [8]. Additionally, the
second-order interference is observed in the superposition
of signal photons from two coherently pumped paramet-
ric amplifiers when the paths of the idler photons are
aligned [9]. Now we draw the attention to the interaction
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of light with the Kerr-like medium. This type of interac-
tion is representative by generating cat states, namely, the
Yurke-Stoler state [10]. The Yurke-Stoler state can gen-
erate nonclassical squeezing in spite of the fact that the
photon-number distribution is Poissonian. The Kerr-like
medium has been intensively studied for various kinds of
the initial states aiming to obtain nonclassical squeezed
light, e.g., [11]. Such studies are encouraged by the possi-
ble observation of the large values of the third-order opti-
cal nonlinearities in, e.g., the organic polymers [12].

The competition between the down-conversion (the
Kerr-like medium) and up-conversion processes is of in-
terest from the theoretical and experimental points of
views, e.g., in the three-mode interaction [13] and in the
nonlinear directional couplers [14,15]. Nevertheless, the
competition between the Kerr-medium and nondegener-
ate parametric amplifier — as far as we know — has not
been treated yet. Thus in this paper we investigate this
system, i.e., the Kerr-down conversion system. For this
system the exact solution can only be obtained under cer-
tain condition, as we shall see. As we mentioned above
the Kerr medium and the down-conversion are important
processes, so that the connection between them is impor-
tant, too. Moreover, this system enables us to investigate
the influence of the Kerr medium on the down-conversion
and vice versa. For this system we investigate different
types of quadrature squeezing such as single-mode, two-
mode and sum squeezing. Also we develop the notion of
the principal squeezing [16] for any type of the quadra-
ture squeezing. It is worth reminding that the squeezed
light can be measured in the homodyne detector where
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the signal is superimposed on the strong coherent beam
of the local oscillator. Generally, we show that the non-
classical effects generated by this system are smaller than
those obtained from the individual processes, i.e., each
process destroys the nonclassical effects generated by the
other one. This contradicts with what one could possibly
expect, i.e., that the combination of these processes will
increase the nonclassical effects. We treat this problem in
the following order: in Section 2 we give the Hamiltonian
model of the system and the basic equations and relations.
In Section 3 we discuss the corresponding results.

2 Basic relations and equations

In this section we give the Hamiltonian model and solve
the associated equations of motion. Also we write down
the definitions of the quadrature squeezing and develop
general definition to the principal squeezing. The Hamil-
tonian model for the Kerr-down conversion system can be
expressed as

Ĥ(t)
�

=
2∑

j=1

[
ωjâ

†
j âj + χj â

†2
j â2

j

]
+ χ̄â†

1â1â
†
2â2

− ik
[
â1â2 exp(iωt) − â†

1â
†
2 exp(−iωt)

]
, (1)

where the waves are described by annihilation operators
âj and by frequencies ωj (j = 1, 2) of the first and second
mode, respectively. The coupling constants χj and χ are
proportional to the third-order susceptibility χ(3) and are
responsible correspondingly for the self-action and cross-
action processes of the modes. The coupling constant k is
real and ω = ω1+ω2. The Hamiltonian (1) can be obtained
in terms of two modes which are interacting via a multi-
layer nonlinear crystal comprising from the Kerr medium
and down conversion medium. This could be possible with
respect to the progress of preparation of new nonlinear
crystals and improved laser sources [12,17].

The exact solution for the equations of motion for (1)
can be obtained under the assumption that χ = −2χ1 =
−2χ2. In this case N̂ = n̂1 − n̂2, where n̂j = â†

j âj , is a
constant of motion and the solution takes the form:

Â1(t) = exp(−2iχN̂t)
{
â1(0)C + â†

2(0)S
}

,

Â2(t) = exp(2iχN̂t)
{

â2(0)C + â†
1(0)S

}
, (2)

where Âj(t) = exp(iωjt)âj and we have used the abbrevi-
ations

C = cosh(kt), S = sinh(kt). (3)

It is evident that the expressions (2) include the amplifi-
cation and periodical features of the down-conversion and
Kerr-like processes, respectively. The Kerr process is rep-
resented by the non-trivial phase factor, which plays an
essential role in occurrence of the nonclassical effects.

As we investigate various types of squeezing, i.e. single-
mode, two-mode, and sum squeezing, we define two gen-
eral quadratures as X̂ = (B̂+B̂†)/2 and Ŷ = (B̂−B̂†)/2i,

which satisfy the commutation rule [X̂, Ŷ ] = D̂/2i. The
operators B̂ and D̂ will be specified in the text. Squeezing
factors associated with the X̂ and Ŷ can be expressed,
respectively, as

F =
1

|〈D̂〉|
[
2Re〈B̂2〉+2〈B̂†B̂〉+〈D̂〉−|〈D̂〉| − 4[Re〈B̂〉]2

]

G =
1

|〈D̂〉|
[
2〈B̂†B̂〉−2Re〈B̂2〉+〈D̂〉−|〈D̂〉| − 4[Im〈B̂〉]2

]
.

(4)

We conclude this section by shedding light on the principal
squeezing [16]. For principal squeezing the quadrature is
defined as:

X̂φ =
1
2
[B̂ exp(−iφ) + B̂† exp(iφ)]. (5)

The value of the angle φ can be controlled by the homo-
dyne detector to obtain the maximum amount of squeez-
ing. The squeezing factor related to (5) is

Vφ =
1

|〈D̂〉|
[
4〈(�X̂φ)2〉 − |〈D̂〉|

]
. (6)

By evaluating the extreme values for (6) with respect to φ,
one can obtain general form for the principal squeezing as

V =
1

|〈D̂〉|

[
〈D̂〉 + 2〈B̂†B̂〉 − (2〈B̂〉〈B̂†〉

+ |〈D̂〉|) − 2
∣∣∣〈B̂2〉 − 〈B̂〉2

∣∣∣
]
. (7)

The definition (7) is more general than that given in [16]
in which the principal squeezing definition is derived only
for the single-mode and two-mode cases through lengthy
calculations.

3 Discussion of the results

We use the results given in the previous section to in-
vestigate the quadrature squeezing for the system under
consideration. We focus the attention on the single-mode,
two-mode and sum squeezing. We assume that the two
modes are initially prepared in the coherent states |α1, α2〉
with real amplitudes αj . Also we shed light on the evolu-
tion of the principal squeezing for each type. This will be
done in the following.

3.1 Single-mode squeezing

As is well-known that the Kerr-like medium can provide
nonclassical squeezing [11], however, the nondegenerate
parametric amplifier cannot generate single-mode squeez-
ing as a result of the self-decoherence [7]. In the present
system we found that the Kerr-like medium is responsible
for generating periodical single-mode squeezing provided
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that k is very small. This means that the competition be-
tween the two processes, i.e. Kerr-like medium and down-
conversion, may destroy the nonclassical effects inherited
in the individual ones. We show this fact for the first mode.
In this case we have B̂(t) = Â1(t), D̂ = 1 and the squeez-
ing factors have the forms:

see equations (8) above

where the subscript (superscript) 1 (1) means that these
quantities are related to the single-mode case (first mode).
Also in (8) we have used the following abbreviations:

ε1 = −2(α2
1 + α2

2), ε2 = α2
1 − α2

2,

Θ± = 2χt ± ε sin(4χt), θ = 6χt − ε sin(4χt). (9)

One can easily check that when (k, α2) = (0, 0) the re-
lations (8) reduce to those of the single-mode Kerr-like
medium. Now let us restrict our discussions to the case in
which α1 = α2. From (8) and (9) one can easily realized
that maximum squeezing occurs when χt = mπ/2, where
m is a positive integer. This means that values of the χ are
responsible for the periodicity, i.e. the degree of harmon-
ics, of the squeezing. For these values of the interaction
times the expressions (8) reduce to

F
(1)
1 (t) = 2S2 − 4α2

1 exp(ε1 − 2kt),

G
(1)
1 (t) = 4α2

1(C + S)2 + 2S2. (10)

From (10) it is evident that squeezing occurs only in the
x -quadrature when k is very small or zero. This indicates
that the amplification of the down-conversion (related to
increase of quantum noise) decreases the non-classicality
produced by the Kerr-like medium. In Figure 1 we have

plotted the principal squeezing and the quadrature squeez-
ing for the first mode when (χ, k) = (0.5, 0). It is obvious
that the principal squeezing provides amount of nonclassi-
cal squeezing greater than that of the quadrature squeez-
ing (compare the solid and long-dashed curves as well as
the short-dashed and the star-centered curves). The com-
parison between the long-dashed and star-centered curves
shows that the entanglement between modes decreases
the nonclassical squeezing. Finally, we have noted that
the higher the values of α2 the smaller the values of the
squeezing.

3.2 Two-mode squeezing

We study here the two-mode squeezing in which the cor-
relation between modes starts to play a role. As we men-
tioned in the Introduction that the nondegenerate para-
metric amplifier produces perfect nonclassical squeezing in
one of the two-mode quadratures. Furthermore, the Kerr-
like medium can produce nonclassical two-mode squeez-
ing, too. Thus the overall behavior of the system could
be expected to increase the amount of squeezing. Nev-
ertheless, we have noted that this is not so. This will
be seen as follows: for the two-mode squeezing B̂(t) =
Â1(t) + Â2(t), D̂ = 2 and the squeezing factors can be
evaluated thus:

see equations (11) above

where G
(j)
1 (t) and F

(j)
1 (t) are the jth-single-mode squeez-

ing factors. We start the discussion by investigating the
influence of the entanglement on the two-mode Kerr-like



394 The European Physical Journal D

Fig. 1. The principal squeezing and the squeezing factor

F
(1)
1 (t) for the first mode against the interaction time t when

(χ, k) = (0.5, 0) and (α1, α2) = (0.4, 0) (solid and long-dashed
curves) and (0.4, 0.4) (short-dashed and star-centered curves).

medium. Thus we set k = 0 in (3). In this case the max-
imum amount of squeezing can periodically occur when
χt = mπ. At these values of the interaction time the
expressions (3) reduce to

F2(t) =
1
2

[
F

(1)
1 (t) + F

(2)
1 (t)

]
,

G2(t) =
1
2

[
G

(1)
1 (t) + G

(2)
1 (t)

]
. (12)

From (12) and the information given in Section 3.1 it
is evident that when α1 �= 0 and α2 = 0, F

(2)
1 (t) = 0

and F
(1)
1 (t) can provide squeezing. Nevertheless, when

αj �= 0 both of the F
(1)
1 (t) and F

(2)
1 (t) provide nonclassi-

cal squeezing. This indicates that the amount of squeezing
produced by the latter case is greater than that of the for-
mer case. This fact is remarkable in Figure 2a for given
values of the interaction parameters. Moreover, the com-
parison between Figure 1 and Figure 2a shows that for
certain values of the interaction time the nonclassical ef-
fects produced by the two-mode squeezing are greater than
those of the single-mode squeezing. This manifests the role
of the correlation between modes. Now we draw the at-
tention to the general case, which is plotted in Figure 2b.
From this figure one can observe that when χ = 0 the
nonclassical squeezing occurs in the y-quadrature only
(see the long-dashed curve), which is rapidly increasing
as the interaction time evolves. From the short-dashed
curve in Figure 2b one can observe that the Kerr-like
medium causes the nonclassical squeezing occurring pe-
riodically in the y-quadrature only with maximum val-
ues as those of the nondegenerate parametric amplifier.
This indicates in the system under consideration that
the kerr-like medium decreases the non-classicality pro-
duced by the down-conversion process. Finally, the com-
parison between the different curves in Figure 2b shows

Fig. 2. The principal squeezing and squeezing factor for the
two-mode case against the interaction time t. (a) For the same
situation as in Figure 1. (b) Principal squeezing and G2(t)
when (α1, α2) = (0.4, 0) and (χ, k) = (0.5, 0.1) (solid and
short-dashed curves). The long-dashed curve in (b) is given
for (χ, k) = (0, 0.1).

that the principal squeezing produces pure nonclassical ef-
fects which for particular values of the interaction time are
greater than those obtained from the quadrature squeez-
ing.

3.3 Sum squeezing

It is worth referring that sum squeezing has been calcu-
lated in nonlinear optics for four-wave sum [18] and dif-
ference [19] frequency generation. In this part we shall
investigate sum squeezing for the present Hamiltonian
model. In this case we have B̂(t) = Â1(t)Â2(t) and
D̂(t) = Â†

1(t)Â1(t) + Â†
2(t)Â2(t). Now let us start the
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F (t) =
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+ 2
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Â†
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χ=0

]2
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2
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†
2(t)Â2(t)

〉
− 2
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Re
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Â†2

1 (t)Â2
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〉
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]
cos(4χt) − 4

[
Im

〈
Â†

1(t)Â2(t)
〉

χ=0

]2

sin2(2χt)
〈
Â†

1(t)Â1(t)
〉

+
〈
Â†

2(t)Â2(t)
〉 , (15)

Fig. 3. Sum squeezing against the interaction time t for
(α1, α2, k) = (0.4, 0, 0.1) and when χ = 0 (solid curve-y-
quadrature), 0.5 (short-dashed and long-dashed curves for y-
and x-quadratures, respectively). Also the solid curve repre-
sents the principal squeezing for the case χ = 0.5.

discussion with the case k = 0, i.e., interaction between
two modes via Kerr-like medium. Thus we obtain

F (t) = G(t) = 0. (13)

This means that we have minimum uncertainty sum-
squeezing, i.e. the two-mode-Kerr system cannot generate
nonclassical squeezing. On the other hand, when χ = 0
the system can exhibit squeezing only in the y-quadrature
and the associated squeezing factor takes the form

G(t) =
2〈Â†

1(t)Â1(t)Â
†
2(t)Â2(t)〉 − 2Re〈Â†2

1 (t)Â2
2(t)〉χ=0

〈Â†
1(t)Â1(t)〉 + 〈Â†

2(t)Â2(t)〉
=

−2(α2
1 + α2

2 + 1)S2C2 − 4α1α2SC

〈Â†
1(t)Â1(t)〉 + 〈Â†

2(t)Â2(t)〉
. (14)

From (14) it is evident that the nonclassical squeezing is
monotonically increasing as the interaction time evolves.
This is obvious from the solid curve in Figure 3 for given
values of the interaction parameters. Now we draw the
attention to the general case in which χ �= 0 and k �= 0.

The squeezing factors for this case take the forms

see equations (15) above

where Re and Im stand for the real and imaginary parts.
From (14) and (15) one can realize that the Kerr-like
medium switches the nonclassical squeezing periodically
between the two quadratures with maximum values as
those of the nondegenerate parametric amplifier (see the
short-dashed and long-dashed curves in Fig. 3). This be-
havior is different from that of the two-mode squeezing for
which nonclassical effects occur in one quadrature only. It
is worth mentioning that the principal squeezing for the
sum squeezing is typical as the solid curve in Figure 3, i.e.
it is the envelope of the quadrature squeezing.

In conclusion, in this paper we give for the first time
the competition between the down-conversion and Kerr-
like processes from the point of view of generation non-
classical squeezing. We prove that generally the amount
of the nonclassical squeezing obtained from each individ-
ual process is decreased as a result of their competition
in the Kerr-down conversion system. This has been shown
for different kinds of quadrature squeezing. We have also
suggested more general form for the description of princi-
pal squeezing.
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El-Orany, J. Peřina, V. Peřinová, M.S. Abdalla, Eur. Phys.
J. D 22, 141 (2003)

8. P.G. Kwiat, W.A. Varek, C.K. Hong, H. Nathel, R.Y.
Chiao, Phys. Rev. A 41, 2910 (1990); Z.Y. Ou, X.Y. Zou,
L.J. Wang, L. Mandel, Phys. Rev. Lett. 65, 321 (1990)

9. X.Y. Zou, L.J. Wang, L. Mandel, Phys. Rev. Lett. 67, 318
(1991)

10. B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13 (1986)
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Quant. Semiclass. Opt. 6, 460 (2004); F.A.A. El-Orany, J.
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